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Abstract

nEquivariant neural networks have been widely used in a variety of applications
due to their ability to generalize well in tasks where the underlying data symmetries
are known. Despite their successes, such networks can be difficult to optimize
and require careful hyperparameter tuning to train successfully. In this work,
we propose a novel framework for improving the optimization of such models by
relaxing the hard equivariance constraint during training: We relax the equivariance
constraint of the network’s intermediate layers by introducing an additional non-
equivariant term that we progressively constrain until we arrive at an equivariant
solution. By controlling the magnitude of the activation of the additional relaxation
term, we allow the model to optimize over a larger hypothesis space containing
approximate equivariant networks and converge back to an equivariant solution
at the end of training. We provide experimental results on different state-of-the-
art network architectures, demonstrating how this training framework can result
in equivariant models with improved generalization performance. Our code is
available at https://github.com/StefanosPert/Equivariant_Optimization_CR

1 Introduction

The explicit incorporation of task-specific symmetry in the design and implementation of effective
and parameter-efficient neural network (NN) models has matured into a rational and attractive NN
design meta-formalism in recent years—that of group equivariant convolutional neural networks
(GCNNs) (Cohen & Welling, 2016; Ravanbakhsh et al., 2017; Esteves et al., 2018; Kondor & Trivedi,
2018; Cohen et al., 2019; Maron et al., 2019; Weiler & Cesa, 2019; Bekkers, 2020; Villar et al., 2021;
Xu et al., 2022; Pearce-Crump, 2023). GCNNs involve using the machinery of group and representa-
tion theory to compose layers that are equivariant to transformations of the input. Such networks,
with hard-coded symmetry, have proven to be successful across a wide variety of tasks, while often
affording significant data efficiency. Such tasks/domains include: RNA structure (Townshend et al.,
2021), protein structure (Baek et al., 2021; Jumper et al., 2021), molecule generation (Satorras et al.,
2021), medical imaging (Winkels & Cohen, 2019), natural language processing (Gordon et al., 2020;
Petrache & Trivedi, 2024), computer vision (Chatzipantazis et al., 2023), robotics (Zhu et al., 2022;
Ordoñez-Apraez et al., 2024), density functional theory (Gong et al., 2023), particle physics (Bo-
gatskiy et al., 2020), lattice gauge theories (Boyda et al., 2021) amongst many others. GCNNs
now have also matured enough to have a well-developed theory. This includes both prescriptive (or
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architectural) theory and descriptive analysis. In general, GCNNs particularly stand out in domains
with data scarcity, or with a high degree of symmetry (Kufel et al., 2023; Boyda et al., 2021), or in the
physical sciences where respecting explicit symmetries could be dictated by physical laws, violating
which could lead to physically implausible predictions.

Despite the successes of group equivariant models, there are several outstanding challenges that
don’t yet have general satisfactory solutions. We discuss two that have attracted recent attention.
The first challenge—the primary motivation of our paper—has to do with the common observation
that equivariant networks can be difficult to train (Wang et al., 2024; Kondor et al., 2018; Liao &
Smidt, 2023). The reasons for this general difficulty are not well-understood, but it seems to occur in
part because the training dynamics of such networks can be notably different from non-equivariant
architectures. For instance, if a GCNN operates entirely in Fourier space (Bogatskiy et al., 2020;
Kondor et al., 2018; Xu et al., 2022), most of the usual intuition about training NN models does
not apply. Further, depending on the level of equivariance error tolerance for a task, the internal
layers could be computationally intensive, and involve e.g. higher-order tensor products. Notably, the
above difficulty arises even when the model is correctly specified i.e. the model and the data encode
the same symmetry. The second challenge with GCNNs, has to do with the downsides of working
with exact equivariance when the data itself might have some (possibly) relaxed symmetry. This
has recently led to a spurt of work on developing more flexible networks that can vary the amount
of equivariance depending on the task (Finzi et al., 2021; Romero & Lohit, 2022; van der Ouderaa
et al., 2022; Wang et al., 2022; Huang et al., 2023; Petrache & Trivedi, 2023). Such models generally
improve accuracy and will sometimes also simplify the optimization process as a side-effect. Broadly,
proposed solutions involve adding additional regularization terms that penalize for relaxation errors,
solving for the problem of model mis-specification (Petrache & Trivedi, 2023).

However, even though there is now work on relaxed2 equivariant networks that addresses model mis-
specification, existing works don’t focus on improving the optimization process directly. In this paper,
we take a step towards examining this question in more detail. We make the case that even if we assume
that the model is correctly specified, relaxing the equivariance constraint during optimization and
then projecting back to the equivariant space can itself help in improving performance. We conjecture
that a prime reason for the optimization difficulty of GCNNs, as compared to non-equivariant models,
is that their solution-space might be too severely constrained. We derive regularization terms that
encourage each layer to operate in a larger hypothesis space during training—than being constrained
to only be in the intertwiner space—while encouraging equivariant solutions. After the optimization
is complete, we project the solution back onto the space of equivariant solutions. The approach can
also be adapted to better optimize approximately equivariant networks in a similar manner. The focus
of our work thus distinguishes it from works on relaxed equivariance—we are not concerned with
mis-specification, but rather with isolating the optimization process itself.

Below we summarize the main contributions of our work:

• We present a novel training framework that can improve the performance of equivariant
neural networks by relaxing the equivariance constraint during training and projecting back
to the space of equivariant models during testing (as shown in Figure 1).

• We present a formulation that extends existing equivariant neural network architectures to
be approximately equivariant. We show how training on the relaxed network can improve
the performance of its equivariant subnetwork.

• We provide experimental evidence showcasing how our framework improves the perfor-
mance of existing state-of-the-art equivariant architectures.

2 Related Work

There is little prior work on providing general procedures for improving the optimization process for
equivariant neural networks directly. Elesedy & Zaidi (2021) sketched a projected gradient method to
construct equivariant networks and suggested a regularization scheme that could be used to implement
approximate equivariance. However, this was proposed as an aside in the paper (sections 7.2 and
7.3), without empirical or theoretical backing. Our work also involves a projected gradient procedure.
However, the regularization scheme that we propose is substantially different.

2We use “relaxed” to encompass notions of partial and approximate equivariance (Petrache & Trivedi, 2023).
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Work on approximate and partial equivariance (Finzi et al., 2021; Romero & Lohit, 2022; van der
Ouderaa et al., 2022; Wang et al., 2022; Huang et al., 2023; Petrache & Trivedi, 2023; Wang et al.,
2023) seems superficially related to ours, but comes with a different motivation. Such methods aim
to match data symmetry with model symmetry and are not explicitly concerned with improving
optimization. As a result, they are designed to address tasks with either inherent relaxed symmetries or
tasks where the underlying relaxed symmetry is misspecified. Contrary to that, our method focuses on
cases where the underlying symmetry is known exactly, and the relaxation of the equivariant constraint
is used only during training as a way to improve the optimization. The works of Finzi et al. (2021);
van der Ouderaa et al. (2022); Gruver et al. (2023); Otto et al. (2024); Petrache & Trivedi (2023) are
nonetheless relevant since they provide methods for measuring relaxed equivariance, comprising of
regularization schemes that are related to those used in our paper, since we also need measures of
relaxation. In fact, the work of Gruver et al. (2023) directly inspires one component of our method.
On the theoretical side, Petrache & Trivedi (2023) studied generalization-approximation tradeoffs in
approximately/fully equivariant CNNs in a very general setting, characterizing the effect of model
mis-specification on performance. They quantify equivariance as improving the generalization error,
and the alignment of data and model symmetries as improving the approximation error. They leave
the impact of improving the optimization error for future work. While we do not provide theoretical
results, our work could be seen as focusing on optimization error component of the classical picture3.

Maile et al. (2023) proposed what they call an equivariance relaxation morphism, which reparamter-
izes an equivariant layer to operate with equivariance constraints on a subgroup, but with the goal of
architecture search. Flinth & Ohlsson (2023) provide an analysis of the optimization dynamics of
equivariant models and compare them to non-equivariant models fed with augmented data. However,
they don’t use the analysis to provide insights on improving the optimization procedure itself.

Several researchers have recently tried to circumvent optimization difficulties in other ways. For
instance, Mondal et al. (2023) suggests using equivariance-promoting canonicalization functions on
top of large pre-trained models. The work of Basu et al. (2023b) operates with a similar motivation
but without canonicalization. Yet another representative of work with a fine-tuning motivation, but
in a different context is (Basu et al., 2023a). Finally, simplifying equivariant networks with heavy
equivariant layers and improving their scalability is an active area of work and is related to easing
optimization. Such works usually employ tools from representation theory, tensor algebra, or exploit
sampling theorems over compact groups and their homogeneous spaces, such as Passaro & Zitnick
(2023); Luo et al. (2024); Cobb et al. (2021); Ocampo et al. (2023).

3 Method

To introduce our proposed optimization framework, we first clearly define the equivariant constraint
that the models we aim to train must satisfy. Assume a function f : Rn → Rm and a group G 4

acting on the input and output spaces via the general linear representations ρin : G → GL(Rn),
ρout : G → GL(Rm). Then the function is said to be equivariant to the action of group G if for all
g ∈ G it satisfies the following constraint:

f(ρin(g)x) = ρout(g)f(x), for all x ∈ Rn (1)

Assuming we use a neural network to approximate the function above, the definition of equivariance
as stated doesn’t impose specific constraints on the individual layers of the network. Nevertheless,
most of the current state-of-the-art equivariant architectures are a composition of simpler layers
each one of which is constrained to be equivariant. In this case, the overall model is the result of a
composition f = fN ◦fN−1 ◦ . . . f2 ◦f1 of simpler equivariant layers fi : Vi → Vi+1, where Vi, Vi+1

are the input and output spaces on which the group G acts with the corresponding representations
ρVi

, ρVi+1
(assuming V1 = Rn, VN = Rm are the input and output spaces respectively).

In this work we focus on a family of models as described above—that are defined through a compo-
sition of simpler equivariant linear layers. During standard training the linear layers are optimized
over the set of intertwiners Hi, i.e. the set of linear maps between the representations (Vi, ρVi) and
(Vi+1, ρVi+1) that have the equivariance property as stated in Equation 1. The set of intertwiners is
only a subset of the set of all possible linear maps from Vi to Vi+1, and as a result, they have a reduced

3Characterizing model performance as generalization error + approximation error + optimization error
4We assume henceforth that we are always dealing with Matrix Lie groups.
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Figure 1: Standard training of equivariant NNs is constrained to a limited parameter space which
can result in a challenging training process. We propose to relax these equivariant constraints during
training, allowing optimization over a broader space of approximately equivariant models. During
testing, we project the trained model back to the constrained space—arriving at an equivariant model
with enhanced performance compared to equivalent models trained with the standard process.

number of free parameters. We propose to facilitate training over this constrained space by relaxing
the constraint imposed on the intermediate layers and optimizing over a larger hypothesis space H̃
which is a superset of the set of equivariant models H ⊂ H̃ . A trivial approach is to completely
relax the constraint and solely optimize over the larger set containing all models. The problem with
such an approach is that it completely abandons the concept of equivariance and all the attendant
generalization benefits. Consequently, to expand the hypothesis space while keeping the benefits of
equivariant models, we need a relaxation such that:

• Given a non-equivariant model f ∈ H̃ , we can efficiently return to an equivariant one
f̄ ∈ H .

• The relaxed model has a small equivariance error Pee = Ex∼p(x)

∫
G
‖ρout(g)f(x) −

f(ρin(g)x)‖dg. This implies that although we extend the space of models we optimize over,
we do not diverge too far away from the space of equivariant solutions.

• After we project back to the equivariant space, the error of the projection Ppe =
Ex∼p(x)

[
‖f(x)− f̄(x)‖

]
is also small. This ensures that while we optimize the less

constrained model, we can return to the equivariant one without sacrificing the overall
performance.

The first objective can be satisfied by defining an intermediate layer of the form:

f(x) = fe(x) + θWx, θ ≥ 0 and fe ∈ H,W ∈ R|Vout|×|Vin| (2)

where H is the set containing all possible equivariant solutions. Here it is easy to see that we can
return to an equivariant model by setting θ = 0, which we refer to as projection to the equivariant
space. The formulation of the linear layer above is similar to the one used in the Residual Pathway
Priors (RPP) (Finzi et al., 2021). Note that in RPP, the value of θ remains constant and acts as a prior
on the level of equivariance we expect from a given task and dataset. Contrasted to that, in this work
we aim to control the value of θ in order to actively change the level of equivariance during training
and project back to the equivariance space during inference.

For the second objective, we need to utilize a metric that measures the relative distance of the model
from the space of equivariant models H . It was observed by Gruver et al. (2023) that an easy way
to measure how much a model satisfies the equivariant constraints is by using the norm of the Lie
derivative. We present details in the next section.
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3.1 Lie Derivative Regularization Term

Assume we are given a matrix Lie group G acting on a vector space V through its representation
ρ : G → GL(V ). For the given group there exists a corresponding Lie algebra g with the property
that for A ∈ g, eA ∈ G. Additionally, there exists a corresponding Lie algebra representation
dρ : g → gl(V ) such that ρ(etA) = edρ(A)t.

If we take the derivative of the action of a group element etA ∈ G at t = 0 we get the Lie derivative:

d

dt

∣∣∣∣
t=0

ρ(etA) =
d

dt

∣∣∣∣
t=0

edρ(A)t = dρ(A) (3)

Assume that the following group representation act on the vector space of functions as:

ρin−out(g)[f ] = ρout(g)
−1 ◦ (f ◦ ρin(g)) (4)

As observed by Gruver et al. (2023) the lie derivative of the above action is zero for all equivariant
functions f , since for all g ∈ G the action ρin−out(g)[f ] = f is the identity map. As a consequence,
we can use the norm of the Lie derivative as a metric to compute how much a function f deviates
from the equivariant constraint of Equation 1. For the linear relaxation term Wx that we introduced
in Equation 2, we have that the Lie derivative can be computed in a straightforward manner as:

LA(W ) =
d

dt

∣∣∣∣
t=0

ρout(e
−At)Wρin(e

At) =
d

dt

∣∣∣∣
t=0

e−dρout(A)tWedρin(A)t

= −dρout(A)W +Wdρin(A)

As a result, we can measure the degree that a linear layer satisfies the equivariant constraint at a point
x, by computing the norm of the Lie derivative at that point for each one of the generators of the
group. For example in the case where G is the group of 3D rotations (G = SO(3)), we can compute
the Lie derivative for each generator:

Jx =

(
0 0 0
0 0 −1
0 1 0

)
, Jy =

(
0 0 1
0 0 0
−1 0 0

)
, Jz =

(
0 −1 0
1 0 0
0 0 0

)
During training, given an input distribution p(x), we compute, for each linear layer Wx, the Lie
derivative regularization term:

Lld(W ) = Ex∈p(x)

 ∑
A∈{Ji}

‖LA(W )x‖


Although the above regularization applies when the symmetry group we are considering is a matrix
Lie Group, as we show in the experiments of Section 4.4, we can also define a similar regularizer for
the case of discrete finite groups. In such a case, for a given linear layer with weights W and input
x, we compute the sum of the norms of the difference Lgj (W )x = (ρ(gj)W −Wρ(gj))x for all
generators gj of the discrete finite group under consideration.

As discussed in Otto et al. (2024) and shown in Figure 3(a), the inclusion of the above regularization
terms encourages equivariant solutions and prevents the model from diverging away from the space
of equivariant models. Moreover, Figure 2 shows how the inclusion of this regularization helps the
overall training and results in a performance improvement of the final trained model.

3.2 Reducing the Projection Error

While we optimize over a larger hypothesis space, we always aim to return to an equivariant model
after the end of training. Using the parametrization in Eq. 2 we can always do that by setting θ to be
equal to zero. Although after the projection the resulting model is guaranteed to be equivariant, it
might be far from the original relaxed version, meaning it might have a large projection error Ppe.
Specifically, for an individual relaxed layer the projection error is:

Ppe = Ex∼p(x)

[
‖f(x)− f̄(x)‖

]
= Ex∼p(x) [‖fe(x) + θWx− fe(x)‖]
= Ex∼p(x) [‖θWx‖]
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As a result, to ensure that Ppe remains low we introduce a second regularization term on the norm
‖Wx‖. Additionally, to reduce the contribution of θ on the projection error, we propose to schedule
its value by slowly decreasing it during the last phase of training. Specifically, we apply a cyclic
scheduling where given NE total number of epochs, the value of θ at epoch i is:

θi =

{
2i
NE

if i < NE/2

2− 2i
NE

if i ≥ NE/2

In Figure 2 we show how both the additional regularization term on the norm of the activation ‖Wx‖,
and the scheduling of θ, affect the performance of our framework.

3.3 Training Objective

Overall, given a task with a corresponding loss Ltask and a data distribution D, our framework
optimizes over the following training objective:

L = E(x,y)∼D

[
Ltask(f(x), y) + λreg

N∑
i=1

(
‖Wifi−1(x)‖+

∑
A∈Ji

‖LA(Wi)fi−1(x)‖

)]
(5)

where Wi is the weight matrix of the ith additive unconstrained linear layer and fi−1(x) is the output
of the (i− 1)th layer (with f0 corresponding to the input).

During training, we control the amplitude of the additive relaxation term by scheduling θ as described
in Section 3.2. During inference, we evaluate only on the equivariant part of the model by setting
θ = 0. Thus as shown in Figure 1, after the end of training, the resulting model has the same
parameter count and model architecture as the baseline model without any additional additive layers.

3.4 Relaxing the constraints of different equivariant architectures

In this section, we consider a selection of different equivariant architectures, and use them to illustrate
how we could apply our proposed optimization framework:

Vector Neurons (Deng et al., 2021) In Vector Neurons, the primary linear layer processes features of
the form X ∈ RN×3. It achieves equivariance by applying a left multiplication with a weight matrix
f(X) = WX . This operation mixes only the rows of the input feature matrix and as a result when
the input features rotate by R, the output also rotates since f(XR) = WXR = f(X)R.

To apply our proposed relaxation we add a linear layer that allows the mixing of all the elements
of the input feature matrix. We can achieve this by unrolling the feature matrix into a vector of
dimension (nm) and then after applying an unconstrainted linear layer, roll it back to a feature matrix.
So the overall relaxed layer has the form:

f(X) = WeX + θuvec [Wvec(x)]

where vec, uvec are the corresponding unrolling and rolling operations.

SEGNN (Brandstetter et al., 2021) and Equiformer (Liao & Smidt, 2023): The intermediate
representation of both SEGNN and Equiformer are steerable vector spaces that transform according
to a representation of SO(3). In particular, both models process a collection of type l tensors that
transform according to the Wigner-D matrices D(l)(g) of the corresponding type l. The interaction
between tensors of different types can be done using the Clebsch-Gordan (CG) tensor product which
is a bilinear operator that combines two input vectors xl1 , xl2 of types l1 and l2 and returns a tensor
(xl1 ⊗ xl2)l of type l as follows:

(xl1 ⊗ xl2)lm =

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)

x(l1)
m1

x(l2)
m2

where x
(l1)
m1 , x(l2)

m2 are the mth
1 , mth

2 elements of tensors x(l1), x(l2) and C
(l,m)
(l1,m1)(l2,m2)

are the
corresponding CG coefficients. In this operation, the CG coefficients restrict the possible interaction
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between elements of different types of vectors. We relax the equivariant constraint by adding
an unconstrained linear layer that can mix the elements from all the tensors used as intermediate
representations, independent of their type. In Equiformer we add such a linear layer in the feed-
forward network of the transformer block. Similarly in SEGNN, we add it to the layer that receives
the aggregated messages from all the neighbors of a node and updates the node features.

Approximately Equivariant Steerable Convolutions (Wang et al., 2022): In this work, the
authors designed approximate equivariant steerable convolutional layers. We apply our method by
incorporating an additional unconstrained convolutional kernel. Since this task contains discrete
symmetry groups, namely discrete rotations and scalings, we replace the Lie derivative regularizer
with the corresponding one for discrete groups, described in Section 3.1.

4 Experiments

4.1 Equivariant Point Cloud Classification

We first evaluate our optimization framework by training different networks on the task of point cloud
classification. We use the equivariant variants of PointNet (Qi et al., 2016) and DGCNN (Wang et al.,
2019) which were proposed by Deng et al. (2021). We train on the ModelNet40 dataset (Chang et al.,
2015), which contains 12311 point clouds from 40 different classes. We compare with the standard
training of these networks using the same hyperparameter configuration as employed in Deng et al.
(2021). During both training and testing, we sub-sample the input point clouds to 300 points.

To apply our method we relax the Vector Neurons linear layer by following the methodology described
in Section 3.4. For both networks we set the regularization term λreg = 0.01, which is a value
we use in all of the following experiments. We provide a more detailed description of the training
parameters in Appendix A.1. Furthermore, in Appendix A.2 we describe the process of choosing
the hyperparameter λreg and show the method’s robustness to its value. Figure 2 showcases how
applying our proposed framework benefits the training of both networks. Specifically, for the case
of the smaller and less performant PointNet, we can see an even larger performance increase over
the baseline. These results show how the performance benefits of our optimization framework
increase in smaller under-parametrized networks, an effect we investigate further in Section 4.2.
In Appendix A.3 we provide additional details on the computational and memory overhead of our
proposed optimization, showcasing that while additional parameters are introduced during training
the overhead in the training time is limited.

Ablations on the regularization terms and θ scheduling: In addition to the training curves of our
method and of the baseline, Figure 2 shows the accuracy of our proposed optimization procedure
when we remove some of the proposed regularization terms or the scheduling of θ. We observe that
without any regularization both models diverge from the space of equivariant solutions. As a result,
during inference when θ = 0 their projection error Ppe becomes larger, resulting in a significant
drop in test accuracy. Similarly, without the Lie derivative regularizer, the final test accuracy of both
network variants drops. In such cases, Wx is unconstrained and can learn to extract non-equivariant
features that the equivariant part fe is not able to learn in any stage of the training. This effect can
also be observed in figure 3(a) showing the total Lie derivative of the network when it is trained with
and without the lie derivative regularization term. Not including the Lie derivative regularization
allows the network, especially in the beginning of training, to optimize over solutions with large
equivariance error. Finally, for both networks, we observe that θ scheduling, as described in Section
3.2, can benefit training compared to fixing θ to a constant low value. In Appendix A.4 we provide
additional results showcasing how contrary to our method a model with a constant θ (without θ
scheduling) has a significant drop in performance after it is projected into the equivariant space.

4.2 Scaling on Different Model and Dataset Sizes

To better understand how the model and dataset sizes affect our proposed optimization framework,
we train models of variable depth on different numbers of training samples. As a baseline model we
use the Steerable E(3) GNN (SEGNN) (Brandstetter et al., 2021) and we train it on the task of Nbody
particle simulation (Kipf et al., 2018). This task consists of predicting the position of 5 electrically
charged particles after 1000 time steps when given as input their initial positions, velocities, and
charges.
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Figure 2: Test accuracy on ModelNet40 classification, during training of equivariant PointNet and
DGCNN using a baseline training process and different versions of our method. The accuracy is
computed for the equivariant models, i.e. for the models after they are projected in the equivariant
space.

(a) (b)

Figure 3: (a) Norm of the total Lie derivative of the relaxed PointNet model trained with and without
the Lie derivative regularization term. For the computation of the Lie derivative we use the method
proposed in Gruver et al. (2023). (b) Value of the Lie derivative regularization term for each individual
layer of the relaxed PointNet model while we train using our framework and with Lie derivative
regularization weight set to λreg = 0.01

Figure 4(a) shows the mean average test error achieved by networks of different sizes, both when
trained with a standard optimization, and when trained with our proposed framework. We can observe
that for all sizes our method achieves better generalizations. The gap between our method and the
baseline becomes greater in the cases of smaller networks, a phenomenon that we also observed in the
point cloud classification experiments in Section 4.1. Thus, our framework, by relaxing the constraint
and introducing additional degrees of freedom, can help the overall optimization, especially in models
with a limited number of parameters. Additionally, figure 4(b) shows that when we fix the model
size and increase the dataset size our method is able to scale better than the baseline. In both cases,
we can observe that the training of the baseline has a much larger variance and is highly dependent
on the random initialization of the layers. On the contrary, our method results in a more consistent
training with a smaller variance between the random trials.

4.3 Molecular Dynamics Simulation

To evaluate our framework in a challenging task using a complex network architecture, we train
Equiformer (Liao & Smidt, 2023) on the task of molecular dynamics simulations for a set of molecules
provided as part of the MD17 dataset (Chmiela et al., 2017). The goal of this task is to predict the
energy and forces from different configurations of a pre-specified molecule. Following Liao & Smidt
(2023), for each molecule we use only 950 different configurations for training which significantly
increases the task difficulty. For all training runs we use the same value of λreg = 0.01 as in the
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(a) (b)

Figure 4: Mean Average Error on the Nbody particle simulation for (a) different model sizes, (b):
different dataset sizes.

previous experiments and for the rest of the hyperparameters, we use the same configuration as the
one proposed in Liao & Smidt (2023). In Table 1 we show that the mean absolute error of energy
and force prediction achieved by Equiformer, both when it is trained using standard training, and
when it is trained with our proposed optimization framework. Without any additional hyperparameter
tuning, our framework is able to provide improvements on the performance of Equiformer even for
this challenging data-scarce task.

Table 1: MAE of Equiformer trained with and without our optimization framework on a set of
molecules from the MD17 dataset. The energy is reported in meV and the force in meV/Å units

Aspirin Benzene Ethanol Salicylic acid

Methods Energy Forces Energy Forces Energy Forces Energy Forces

Equiformer 5.3 7.2 2.2 6.6 2.2 3.1 4.5 4.1
Equiformer+Ours 5.2 7.1 2.2 6.6 2.0 2.9 4.1 4.1

4.4 Optimizing Approximately Equivariant Networks

Finally, we show how our framework can be beneficial, not only for the optimization of exactly
equivariant networks, but also for approximate equivariant ones. We apply our method on top of the
approximate equivariant steerable CNNs proposed in Wang et al. (2022). Although these models are
not projected back to the equivariant space, they are still regularized to stay within solutions with
small equivariant error. The main difference with our framework is that in the approximate equivariant
setting, the equivariant relaxation remains the same throughout training. On the contrary, we propose
to progressively constrain the model by modulating the value of the unconstrained term by slowly
decreasing the value of θ from Equation 2. As a result by applying our optimization framework
on top of the standard training of the approximate equivariant kernels, we test how progressively
introducing additional constraints throughout training can help the performance of the network.

We evaluate our method on the task of 2D smoke flow prediction described in Wang et al. (2022). The
inputs of the model are sequences of successive 64× 64 crops of a smoke simulation generated by
PhiFlow (Holl et al., 2020). The desired output is a prediction of the velocity field for the next time
step. We evaluate in two different settings: the "Future" setting where we evaluate on the same part of
the simulation but we predict future time steps not included in the training, and the "Domain" setting
where we evaluate on the same time steps as in training but in different spatial locations. The data
are collected from simulations with different inflow positions and buoyant forces. For the rotational
symmetry case, while the direction of the inflow and of the buoyant force is symmetric to 90◦ degrees
rotations (C4 symmetry group), the buoyancy factor changes for the different directions making the
task not symmetric. For the scaling symmetry, the simulations are generated with different spatial
and temporal steps, with the buoyant factor changing across scales.
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Table 2: RMSE error on the synthetic smoke plume dataset with approximate rotational and scale
symmetries. In the "Future" evaluation we train and evaluate the models in the same simulation
location but we test for later time steps in the simulation from the ones used in training. In the
"Domain" evaluation we train and evaluate the models on the same timesteps but on different spatial
locations in the simulation.

Model MLP Conv Equiv Rpp Lift RSteer RSteer+Ours

Rotation Future 1.38± 0.06 1.21± 0.01 1.05± 0.06 0.96± 0.10 0.82± 0.08 0.80± 0.00 0.79± 0.01
Domain 1.34± 0.03 1.10± 0.05 0.76± 0.02 0.83± 0.01 0.68± 0.09 0.67± 0.01 0.58± 0.00

Scale Future 2.40± 0.02 0.83± 0.01 0.75± 0.03 0.81± 0.09 0.85± 0.01 0.70± 0.01 0.62± 0.02
Domain 1.81± 0.18 0.95± 0.02 0.87± 0.02 0.86± 0.05 0.77± 0.02 0.73± 0.01 0.67± 0.01

In addition to the approximate equivariant steerable CNNs (RSteer), we compare with a simple MLP,
with a non-equivariant convolutional network (ConvNet), as well as with an equivariant convolutional
network (Equiv) (Weiler & Cesa, 2019) and with two additional approximate equivariant networks
RPP (Finzi et al., 2021) and LIFT (Wang et al., 2021) that are trained using a standard training
procedure. In Table 2 we see that by applying our optimization framework the resulting approximate
equivariant model outperforms all other baselines in both cases of approximate rotational and scale
symmetry. These results indicate that starting from an unconstrained model and progressively
increasing the applied constraints can benefit optimization even in the case where at the end of
training we stay in the space of approximate equivariant models and do not project back to the
equivariant space.

5 Conclusion

In this work, we focus on the optimization of equivariant NNs. We proposed a framework for
improving the overall optimization of such networks by relaxing the equivariance constraint and
optimizing over a larger space of approximately equivariant models. We showcase the importance of
utilizing regularization during training to ensure that the relaxed models stay close to the space of
equivariant solutions. After training, we project back to the equivariant space arriving at a model
that respects the data symmetries, while retaining its high performance on the task. We evaluate our
proposed framework and its individual components over a variety of different equivariant network
architectures and training tasks, and we report that it can consistently provide performance benefits
over the standard training procedure. A theoretical analysis of our approach, possibly with appeal to
empirical process theory (Pollard, 1990) to control the optimization error, is left for future work.
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A Appendix/ Supplemental Material

A.1 Training Details

In this section, we provide additional details for the application of our framework in the experiments
presented in this work. We fix the weight of the regularization term to be λreg = 0.01 for all the
experiments. We arrive that the above value for the hyperparameter λreg by performing grid-search
using cross validation, as described in more detail in Section A.2. Additionally, except on the
corresponding ablation study, we use the scheduling of the value of θ as described in Section 3.2. The
variance reported is over 5 random trials of the same experiment with different seeds. We run all the
experiments on NVIDIA A40 GPUs. For the model-specific training details:

• Point Cloud Classification: We use as baselines the VN-PointNet and VN-DGCNN network
architectures described in the work of Deng et al. (2021). For the relaxed version of VN-
PoitNet we train for 250 epochs using the Adam optimizer (Kingma & Ba, 2015), with an
initial learning rate of 10−3, that we decrease every 20 epochs by a factor of 0.7, and weight
decay equal to 10−4. For the relaxed version of VN-DGCNN we train for 250 epochs using
stochastic gradient descent, with an initial learning rate of 10−1, that we decrease using
cosine annealing, and weight decay equal to 10−4. The batch size used was 32.

• Nbody particle simulation: We train the relaxed version of SEGNN (Brandstetter et al.,
2021) for 1000 epochs using Adam optimizer (Kingma & Ba, 2015) with a learning rate of
5 ∗ 10−4, a weight decay of 10−12 and batch size of 100. We report the test MAE for the
model at the training epoch that achieved the minimum validation error.

• Molecular Dynamics Simulation: We train the relaxed version of Equiformer (Liao &
Smidt, 2023) for 1500 epochs using AdamW optimizer (Loshchilov & Hutter, 2019) with
an initial learning rate of 10−5, that we decrease using cosine annealing, and with weight
decay equal to 10−6. The batch size used was 8. We use the network variant with max
representation type set to Lmax = 2

• Approximately Equivariant Steerable Convolution: We train the approximately equiv-
ariant steerable convolution proposed in Wang et al. (2022) after we apply our additional
relaxation. We modify the same architecture used in the original work which contains 5
layers of approximate equivariant steerable convolutions. We train for 1000 epochs using
the Adam optimizer (Kingma & Ba, 2015). We use an initial learning rate of 10−4, that we
decrease at each epoch by 0.95. We perform early stopping, where the stopping criterion is
that the mean validation score of the last 5 epochs exceeds the mean validation score of the
previous 5 epochs.

A.2 Choice of Hyperparameters

In all the experiments, apart from the weight λreg of the proposed regularization term, we use the
same hyperparameters as the ones used by the baseline methods we compare with. For the choice of
λreg we perform hyperparameter grid search using cross-validation with an 80%-20% split of the
original training set of ModelNet40 into training and validation. Figure 5 showcases the performance
of a VN-Pointnet model trained with our method on the 80% training split and evaluated on the 20%
validation split for different values of λreg. We observed that the best value of λreg is relatively
robust across tasks, so we performed an extensive hyperparameter search for the task of point cloud
classification, and we used the found value λreg = 0.01 across all other tasks.

A.3 Computational and Memory Overhead of proposed method

The computational overhead introduced by our method only affects the training process. During
inference, after the projection to the equivariant space, the retrieved model has the same architecture
as the corresponding base model to which we apply our method on, thus it also has the same
computational and memory requirements. In Table 3 we show the cost of our method, in terms of
training time and number of additional parameters. While our proposed method introduces additional
parameters during training, due to the parallel nature of the unconstrained non-equivariant term, the
overhead in training time can be limited given enough memory resources. As a result, while the
additional parameters are approximately three times the parameters of the base model the increase in
the training time is below 10% of the base training time.
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Figure 5: ModelNet40 classification accuracy on the validation set using our proposed method with
different values of λreg. The base model used was the VN-PointNet. The model was trained on a
split of the training set containing 80% of the training data. The other 20% of the data were held out
as the validation set used to evaluate the model.

Table 3: Additional Number of parameters and Computational Overhead introduced by the proposed
method

Model Number of Parameters Additional Parameters Time per Epoch Time per Epoch
(Base Model) (Ours) (Base Model) (Ours)

VN-PointNet 1.9M 6.4M 75s 80s
VN-DGCNN 1.8M 6.2M 148s 154s
Equiformer 3.4M 10M 52s 57s

A.4 Ablation on θ Scheduling and Equivariant projection

During the later stages of training our proposed θ scheduling slowly decreases the level of relaxation
of the equivariant constraint, bringing the model closer to the equivariant space. This process allows
the model to smoothly transition from the relaxed equivariant case to the exact equivariant one. In
Figure 6 we show a comparison of the performance of a model trained with our proposed θ scheduling
and a model trained with a constant θ before and after it is projected to the equivariant space. While
the performance of the relaxed equivariant model with constant θ is close to the performance achieved
by our method, we can observe a sudden drop in performance once it is projected back to the
equivariant space. On the other hand, our proposed scheduling of θ allows the model to return to the
equivariant space by the end of training without showcasing such a significant performance drop.

Figure 6: Comparison of the performance on ModelNet40 classification (300 points), for a model
trained with our method and a model trained with a constant value of θ, for which the level of
equivariant error is controlled only by the regularization term. For the latter method we show results
both before and after the projection to the equivariant space.
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A.5 Additional comparison with Methods using Equivariant Adaptation/Fine Tuning

As described in Section 2, while our work focuses on improving the optimization of equivariant net-
works, the works of Mondal et al. (2023) (Equiv-Adapt) and Basu et al. (2023b) (Equi-Tuning) focus
on circumventing the need of optimizing equivariant network by performing equivariant adaptation or
fine tunining of non-equivariant models. Since such methods have a different focus, mainly utilizing
already pre-trained non-equivariant models to solve equivariant tasks, a straightforward comparison
can be challenging. Nevertheless, in Table 4 we provide a comparison with our proposed method on
the task of sparse point cloud classification. We can see that our method outperforms Equiv-Adapt
and has performance close to the one achieved by Equi-Tuning which requires multiple forward
passes during inference.

Table 4: Comparison of our proposed method with previous works performing equivariant adaption
or finetuning, on ModelNet40 classification (Base model: VN-PointNet). Here it is important to note
that in the case of Equi-Tuning, equivariance is achieved by group averaging. As a result, during
inference the model is required to perform multiple forward passes, which slows down the method’s
inference.

Equiv-Adapt Equi-Tuning Original VNN Ours
66.3% 74.9% 66.4% 74.5%

A.6 Limitations

As we describe in Section 3, our work focuses on the assumption that the equivariant NN satisfies the
equivariant constraint by imposing it in all of its intermediate layers. Although this assumption is
general enough to cover a large range of state-of-the-art equivariant architecture, it doesn’t apply to
all possible equivariant networks since it is possible to ensure overall constraint satisfaction using a
different methodology. Additionally the proposed regularizers in Section 3.1 can be applied to tasks
where the symmetry group is a matrix Lie group or a discrete finite group. Extending our proposed
framework to arbitrary symmetry groups is a future research question that is not addressed in this
paper.

A.7 Broader Impact

This paper focuses on the question of improving the optimization of equivariant neural networks.
Such equivariant networks are currently used to solve tasks in different fields– ranging from computer
vision to computational chemistry. As a result, its broader societal impact is highly dependent on the
specific network it enables optimizing.
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